با شنیدن عبارت هوش مصنوعی، تصورات مختلفی در ذهن ما شکل می‌گیرد. برخی صدای دستیارهای هوشمندی همچون سیری و کورتانا و الکسا را می‌شنویم و برخی دیگر ممکن است به یاد تصاویر دلهره آور فیلم‌های علمی تخیلی بیفتیم به هرحال هوش مصنوعی امروزه در اندیشه بسیاری از کاربران دنیای فناوری وجود دارد و تا آینده‌ی نامشخصی هم بخشی از زندگی ما خواهد بود. تحولی که شاید آینده‌ای روشن و یا یک نابودی وحشتناک شبیه به فیلم های تخیلی برای ما بسازد.

هوش مصنوعی

در این مطلب از هیوا قصد بررسی یکی از تحولان اساسی در زندگی انسانی را داریم. هوش مصنوعی (Artificial Intelligence) شاخه ای از علوم کامپیوتر است که در آن به ساخت ماشین‌هایی هوشمند پرداخته می‌شود که مانند انسان‌ها عمل کرده و همه چیز را با تحلیل مستقل خود انجام می دهند. یک موجودیت هوشمند، سیستمی است که با شناخت محیط اطراف خود، قدرت انجام کارهای مختلف را پس از تحلیل افزایش می‌دهد.

به عبارت دیگر هوش مصنوعی به هوشی گفته می‌شود که از هرنوع ماشین (و نه انسان) ایجاد گردد. کتاب‌های معتبر مرجع در این زمینه، دستگاه های دارای هوش مصنوعی را اینگونه تعریف میکنند: “هر دستگاهی که توانایی درک محیط و فعالیت با حداکثر شانس موفقیت را داشته باشد”. البته در این مقاله از هیوا ما قصد بررسی کلی این بحث را داریم نه ورود به جزئیات فنی. درمجموع اصطلاح هوش مصنوعی برای توصیف ماشین‌ها یا سیستم های رایانه ای بکار می‌رود که فعالیت‌های شناختی وابسته به ذهن انسان را به‌خوبی انجام دهند. ازمیان فعالیت‌های مهم شناختی می‌توان به “قدرت یادگیری” و “توانایی حل مساله” اشاره کرد.

فعالیت‌هایی که در دسته‌ی فعالیت‌های هوشمندانه‌ی ماشینی قرار می‌گیرند، به مرور زمان تغییر می‌کنند و درواقع با توانمندتر شدن ماشین‌ها، برخی فعالیت‌ها دیگر لزوما هوشمندانه نیستند. تئوری تسلر در تعریف هوش مصنوعی می‌گوید هر دستاوردی که تاکنون انجام نشده باشد، هوش مصنوعی نام می‌گیرد. درنتیجه امروزه انجام فعالیت‌هایی همچون تشخیص کاراکتر دیگر یک ماشین را هوشمند نمی‌کنند. در دنیای مدرن، وظایف پیچیده تری مانند تشخیص صحبت‌های انسان، رقابت در بازی‌های استراتژیک همچون شطرنج و هدایت خودکار ماشین‌ها و ربات های جنگی هوشمندی واقعی را تعریف می‌کنند.

تفکر انسان درباره‌ی ماشین‌های هوشمند به قرن‌ها پیش باز می‌گردد و داری تاریخچه ای متعلق به اواسط قرن بیستم دارد. هرچند تفکر انسان درباره‌ی هوشمند شدن ماشین‌ها به قرن‌ها پیش باز می‌گردد. این تاریخچه، فراز و نشیب های زیادی را تجربه کرد تا اینکه اکنون یکی از مهمترین موضوع‌های بحث محسوب می‌شود. با رشد عجیب قدرت کامپیوترها و داده‌های در دسترس برای آموزش آن‌ها، در دوره شکوفایی هرچه بیشتر این علم هستیم.

تاریخچه هوش مصنوعی

موجودات هوشمندی که توانایی تفکر داشته باشند، در اسناد تاریخی از دوران باستان دیده می‌شوند. اولین تعریف از چنین موجوداتی، آن‌ها را ابزارهایی با قابلیت داستان‌گویی می‌دانستند. پس از گذشت قرن‌ها، در کتاب‌های داستانی همچون فرانکشتاین، نمونه‌هایی از ماشین‌های هوشمند دیده شدند. کاراکترهای موجود در داستان‌های مذکور، اولین چالش‌ها را درباره‌ی اخلاقیات حوزه‌ی هوش مصنوعی مطرح کردند و به نوعی موجب شکل گیری نگرانی هایی نیز شد.

مطالعه‌ی عقل و منطق، به دوران فیلسوفان دوره باستان مربوط می‌شود. ازطرفی منطقی که از ریاضیات نشأت گرفته باشد، بیشتر به آلن تورینگ و نظریه‌ پردازش او باز می‌گردد. تورینگ در نظریه‌ پردازش می‌گوید که هر ماشینی با ترکیب علامت‌های ریاضی و اعداد 0 و 1، توانایی شبیه‌سازی هر عملکرد ممکن را در استنتاج ریاضی دارد. چنین رویکرد و چشم‌اندازی به‌نام نظریه‌ی چرچ-تورینگ شناخته می‌شود.

توسعه‌ی علومی همچون عصب‌شناسی و نظریه‌ی اطلاعات و سایبرنتیک، محققان را به تصور و تحقیق درباره‌ی احتمال توسعه‌ی یک مغز الکترونیکی واداشت. تورینگ، پرسش امکان‌پذیر بودن هوشمندی ماشین را به این پرسش تغییر داد: “آیا یک ماشین می‌تواند رفتارهای هوشمندانه انجام دهد؟” اولین مقاله‌ رسمی که در این حوزه نوشته شد، اثر سال 1943 مک‌کولا و پیتس بود که نورون‌های مصنوعی را باتوجه به نظریه‌ی «کامل بودن» تورینگ تعریف کردند.

حوزه‌ی تحقیق پیرامون هوش مصنوعی، در سال ۱۹۵۶ و آزمایشگاهی در کالج دارتموث (Dartmouth College) متولد شد. شخصی به نام جان مک کارتی (John McCarthy) این حوزه را از زیرمجموعه‌ی سایبرنتیک و نظریه‌های سایبرنتیست‌هایی همچون نوربرت وینر خارج کرد و می توان گفت اصطلاح Artificial Intelligence توسط او ایجاد شد. از پیش‌گامان در زمینه هوش مصنوعی می‌توان به آلن نول، هربرت سیمون، جان مک کارتی، ماروین مینسکی و آرتور ساموئل اشاره کرد. آن‌ها به کمک دانشجویان خود برنامه های تحقیقاتی انجام دادند که رسانه‌های جهان، لقب “عجیب” را برایشان به کار می بردند.

رایانه هایی که دارای اولین برنامه‌های هوشمند بودند عملکردهای خارق‌العاده‌ای همچون یادگیری استراتژی بازی چکرز و بازی کردن آن، حل مسائل گوناگون در حوزه‌ی منطق و ریاضیات، صحبت کردن به زبان انگلیسی و غیره را داشتند. تا اواسط دهه 1960، تحقیق پیرامون هوش مصنوعی به یکی از موضوع‌های اصلی دنیای فناوری با سرمایه‌گذاری‌های عظیم تبدیل شد. وزارت دفاع آمریکا (پنتاگن) یکی از سرمایه‌گذاران اصلی پروژه‌های هوش مصنوعی بود و آزمایشگاه‌های متعدد نیز در کشورهای دیگر راه‌اندازی می‌شدند. محققان هوش مصنوعی در آن سال‌ها با خوش‌بینی بسیار مشغول فعالیت بودند. هربرت سیمون پیش‌بینی کرده بود که تا ۲۰ سال بعد، ماشین‌ها توانایی انجام همه‌ی کارهای انسانی را خواهند داشت. مارتین مینسکی نیز اعتقاد داشت پس از یک نسل، چالش توسعه‌ هوش مصنوعی کاملا از بین خواهد رفت.

تا اواسط دهه 1980، موفقیت‌‌های چندانی در توسعه‌ی هوش مصنوعی پیشرفته به دست نیامد چراکه با پیشرفت هرچه بیشتر آن، چالش‌های جدیدی در فرایند توسعه پیدا می‌شد. در این بین برخی کشورهای قدرتمند مانند آمریکا و بریتانیا نیز به مرور زمان سرمایه گزاری در این زمینه را کاهش دادند. از آن زمان دورانی موسوم به “زمستان هوش مصنوعی”‌ شروع شد؛ بطوری که جذب سرمایه برای پروژه‌های هوش مصنوعی، یک چالش بزرگ بود.

در اواخر دهه 1980، اولین موفقیت‌های بزرگ باوجود سرمایه گذاری‌های محدود در زمینه هوش مصنوعی دیده شد. کامپیوترهایی موسوم به سیستم خبره متولد شدند که توانایی شبیه سازی دانش و مهارت‌های تحلیلی متخصصان انسانی را داشتند و به مرور بازار هوش مصنوعی به بزگی رسید و ژاپن نیز با پروژه‌ی “کامپیوتر نسل پنجم” خود، گواهی بر موفقیت علم ارائه کرده بود. آمریکا و بریتانیا مجددا به سرمایه‌گذاری در هوش مصنوعی تشویق شدند،‌ اما به‌هرحال باز هم شکست پروژه‌هایی همچون LISP Machine ، آینده‌ی هوش ماشینی را مبهم کرد و دوران مطلق بدون سرمایه گزاری آغاز گردید.

فناوری‌هایی مانند MOS و VLSI که در فرم CMOS و در اواسط دهه 1980 معرفی شدند، توسعه شبکه های عصبی مصنوعی (ANN) را ممکن می‌کردند. این سخت افزارها باعث شدند استفاده از ماشین‌ها برای فعالیت‌های هوشمدانه، به موضوعی داغ تبدیل شود. دهه 1990 و همچنین اوایل قرن 21 زمان استفاده از هوش مصنوعی در فعالیت‌هایی همچون بررسی معادن، تحلیل داده ای و تشخیص‌های پزشکی بود که کم کم، ظرفیت‌های علم جدید را اثبات می‌کرد. گره خوردن هوش مصنوعی با حوزه‌هایی همچون آمار و اقتصاد و ریاضی در سال‌های ابتدایی قرن 21 رخ داد و به مرور، دوران تازه‌ای از توسعه‌ی هوش ماشینی، شروع شد. شاید شکست خوردن قهرمان شطرنج جهان، گری کاسپاروف، از کامپیوتر Deep Blue  در سال 1997، جرقه انفجار هوش مصنوعی بود.

انواع هوش مصنوعی

هوش مصنوعی در سطوح بالا به دو نوع هوش مصنوعی محدود (Narrow Artificial Intelligence) و هوش مصنوعی عمومی (General Artificial Intelligence) تقسیم می‌شود. این دسته بندی به درک بهتر مفاهیم و دستاوردهای هوش مصنوعی و روش توسعه آن‌ها کمک می‌کند. هوش مصنوعی محدود را هوش مصنوعی ضعیف (Weak Artificial Intelligence) هم می نامند.

Narrow Artificial Intelligence همان هوشمندی است که همه ما در کامپیوترهای امروزی میبینیم سیستم‌های هوشمندی که تحت آموزش یا یادگیری خودکار، انجام وظایف خاص را بدون برنامه‌ریزی اختصاصی برای آن وظایف، ممکن می‌کنند. چنین نوعی از هوشمندی در کاربردهایی همچون تشخیص صدا و زبان در دستیارهای مجازی مانند سیری دیده می‌شود. از کاربردهای دیگر هوش مصنوعی محدود می‌توان به سیستم‌های شناسایی بصری در خودروهای خودران و موتورهای پیشنهاد محصول در خرده‌فروشی‌های آنلاین اشاره کرد. چنین سیستم‌های هوشمندی برخلاف انسان‌ها تنها توانایی یادگیری انجام وظایف محدودی را دارند و به‌همین دلیل،‌ هوش مصنوعی محدود نامیده می‌شوند.

توانایی Narrow Artificial Intelligence

امروزه کاربردهای متنوعی برای هوش مصنوعی محدود وجود دارد که هرروزه هم بر تعداد آن‌ها افزوده می‌شود. تفسیر داده‌های تصویری یکی از کاربردهای مهم این نوع از هوش مصنوعی است که خصوصا در پهپادهای صنعتی با وظیفه‌ی بررس خطوط لوله های انتقال نفت و گاز دیده می‌شود. Narrow AI امروزه می‌تواند تقویم‌های شخصی و کاری افراد را منظم و برنامه‌ریزی کرده و حتی با هوش‌های دیگر همکاری کند؛ همکاری که در کاربردهایی مانند رزرو هتل یا درخواست خودرو و موارد دیگر، دیده ایم به عبارت دیگر هوش مصنوعی مخصوص انجام وظایف خاص، هوش محدود نامیده می‌شود.

Narrow Artificial Intelligence در کاربردهای پزشکی نیز کاربرد فراوان دارد مثلا برخی از ماشین‌ها می‌توانند در تشخیص تومورهای احتمالی به رادیولوژیست ها کمک کنند. همچنین در شبکه‌های اجتماعی نیز کاربرد زیادی دارند و زندگی در این شهرهای جدید را آسان تر می‌کنند. درحال حاضر هوش مصنوعی در شبکه‌های اجتماعی توانایی تشخیص محتوای نامربوط یا آزاردهنده را دارد و مرتب کردن موضوعات نمایش محتوا نیز از وظایف آن محسوب می‌شود. ترکیب Narrow Artificial Intelligence با تجهیزات اینترنت اشیاء  (IOT) نیز کاربردهای فراوانی را دارد.

توانایی‌های هوش مصنوعی عمومی

هوش مصنوعی عمومی تفاوت‌های عمده‌ای با نوع محدود دارد این نوع هوشمندی می‌تواند رفتارهایی بسیار شبیه به انسان را از خود نشان دهد. درواقع هوش عمومی، منعطف تر بوده و توان یادگیری مهارت برای انجام دادن وظایف گوناگون را دارد. هر فعالیتی از اصلاح مو تا منظم کردن فایل‌های اکسل مدیران تا حتی استنباط و نتیجه‌گیری از اطلاعات توسط یک هوش مصنوعی عمومی قابل انجام هستند.

فاکتورهای کلیدی Artificial Intelligence

فرایندهای پردازش بازگشتی (پردازش خطی) سطوح متعددی از درک انتزاعی را در سیستم هوشمند ممکن می‌کنند.

اطلاعات در فرایندها به‌صورت جامع پردازش می‌شود. در هر نقطه، اطلاعات ابتدا بسته به موضوع و زمینه مشخص می‌شوند؛ اما زمینه‌هایی که بین و در امتداد مفاهیم انتزاعی جابه‌جا می‌شوند، نقش مهمی در تبدیل اطلاعات دارند.

دسته‌بندی، یکی از بخش‌های اصلی در فرایندهای هوش مصنوعی محسوب می‌شود.

گراف اطلاعات، دائما درحال تغییر است و از فیلترهایی برای تغییر استفاده می‌کند که خود، براساس اطلاعات موجود ساخته می‌شوند.

هوشمندی به‌صورت نقطه‌ای، توزیع‌یافته و تصادفی تعریف می‌شود. به عبارت دیگر اطلاعاتی که در سیستم داریم، هیچ‌گاه کامل نیستند و تصمیم‌گیری هوش مصنوعی تنها زمانی ممکن می‌شود که نقطه‌ی اوجی از اطلاعات تأییدکننده یا ردکننده‌ی یک حقیقت، ارائه شود.

در هر نقطه از فعالیت سیستم، اطلاعات در یک مدل وجود دارد، اما خود مدل طبیعی منعطف داشته و توانایی اصلاح خود را دارد. چنین مدلی با مدل‌های کنونی که از پیش تعریف شده و ثابت هستند، متفاوت است این سیستم اکنون سطحی از خودآگاهی دارد. مفاهیم ذکر شده نشان می‌دهد که هوش مصنوعی به سطحی قابل‌توجه از پیچیدگی رسیده است و مدل‌های پردازشی آن نیز هیچ‌گاه ثابت نمی‌مانند.

هوش مصنوعی
یادگیری ماشین و شبکه‌های عصبی و یادگیری عمیق

در بخش تاریخچه و تعارف هوش مصنوعی، دو مفهوم به‌عنوان ابزارهای اصلی شکوفایی این فناوری مطرح شدند. یادگیری ماشین یکی از ابزارهای اصلی توسعه‌ی هوشمندی در ماشین‌ها محسوب می‌شود که مفاهیم پایه‌ای هوش را شکل می‌دهد. درواقع ماشینی که به یادگیری مجهز باشد، قدم اول را به طرف هوشمند شدن مانند انسان برداشته است.

یادگیری ماشین

یادگیری ماشین در تعریف ساده با ارائه‌ی داده‌های وسیع به ماشین شروع می‌شود. سپس ماشین با استفاده از همان داده‌ها، چگونگی انجام وظایف خاص مانند درک صحبت یا برچسب‌گذاری تصاویر را می‌آموزد. داده، عنصر اصلی در توسعه‌ی یادگیری ماشین محسوب می‌شود و به‌همین دلیل در سال‌های اخیر شاهد افزایش جمع‌آوری داده توسط شرکت‌های فناوری بوده‌ایم. درواقع امروز کلان‌داده و یادگیری ماشین، دو مفهوم درهم تنیده‌شده هستند. مفهوم دیگری که مثلث بنیادی هوش مصنوعی را تکمیل می‌کند، شبکه‌‌ی عصبی نام دارد.

شبکه‌های عصبی، کلید پردازشی در یادگیری ماشین هستند. چنین شبکه‌هایی با الهام از ساختار نورون‌های مغز انسان توسعه یافته‌اند و از لایه‌های متعدد و متصل به هم الگوریتم موسوم به نورون تشکیل می‌شوند. لایه‌های الگوریتمی در شبکه‌ی عصبی، داده را با یکدیگر تبادل می‌کنند. هر نورون، قابلیت یادگیری انجام وظیفه‌ای خاص را دارد و با اولویت‌بندی ساختار داده‌ی درحال تبادل، فرایندی را روی آن انجام می‌دهد. در مسیر یادگیری شبکه‌های عصبی، اولویت و وطن داده‌های ورودی تغییر می‌کند تا اینکه درنهایت خروجی موردنیاز از شبکه استخراج می‌شود. در چنین وضعیتی، شبکه‌ به‌نوعی انجام دادن یک وظیفه‌ی خاص را آموخته است.

یادگیری عمیق

یادگیری عمیق از مفاهیم زاده‌شده از دل یادگیری ماشین است. شبکه‌های عصبی در چنین سبکی از یادگیری به شبکه‌هایی گسترده توسعه می‌یابند و لایه‌های بسیار متعددی دارند. در یادگیری عمیق، هر لایه توانایی بررسی و پردازش داده‌های بسیار عظیمی را خواهد داشت. یادگیری عمیق، موجب شد تا کامپیوترهای امروزی به توانایی‌های مثال‌زدنی هوشمندی و یادگیری دست پیدا کنند که نمونه‌هایی از آن را در تشخیص صحبت و بینایی کامپیوتری می‌بینیم.

پردازش تکاملی، یکی از حوزه‌های تحقیقات هوش مصنوعی محسوب می‌شود که با پیشرفت شبکه‌های عصبی متولد شد. محققان، با تکیه بر نظریه‌های داروین و مفاهیم جهش ژنتیکی، سبک جدیدی از هوش مصنوعی را مطرح می‌کنند. چنین رویکردی موجب توسعه‌ی هوش مصنوعی با توانایی ساختن هوش مصنوعی دیگر شد. استفاده از الگوریتم‌های تکاملی برای بهینه‌سازی شبکه‌های عصبی، به عبارت  Neuroevolution شناخته می‌شود و در توسعه نسل‌های بعدی از سیستم‌های هوشمند،‌ کارایی بسیاری خواهد داشت. جدیدترین دستاوردها در این حوزه، در آزمایشگاه هوش مصنوعی اوبر رخ داد که از الگوریتم‌های ژنتیکی برای آموزش شبکه‌های عصبی عمیق در جهت یادگیری پیشرفته استفاده کرد.

سیستم‌های خبره، از مفاهیم دیگر توسعه‌‌یافته در مسیر هوش مصنوعی هستند. این سیستم‌ها با قوانینی برنامه‌ریزی می‌شوند که امکان تصمیم‌گیری براساس مجموعه‌ای عظیم از داده را به آن‌ها می‌دهد. چنین رویکردی، رفتار ذهن انسان را در حوزه‌ای خاص، شبیه‌سازی می‌کند. از نمونه‌های سیستم خبره می‌توان به خلبان خودکار در هواپیما اشاره کرد.

پردازنده‌های اختصاصی یادگیری ماشین

از دستاوردهای مهم سال‌های اخیر در حوزه‌ی هوش مصنوعی، پیشرفت‌های یادگیری ماشین و خصوصا یادگیری عمیق، مهم‌ترین تأثیر را بر پیشرفت علم داشته‌اند. بخش مهمی از دستاوردها، به‌خاطر ظهور مفاهیم کلان‌داده ممکن شد. به‌علاوه، افزایش قدرت در حوزه‌ی رایانش موازی هم به سرعت گرفتن توسعه‌ی فناوری کمک کرد. در رایانش موازی، خوشه‌هایی از پردازنده‌های گرافیکی برای آموزشی سیستم‌های یادگیری ماشین استفاده می‌شوند.

توسعه‌ی پردازنده‌های اختصاصی

خوشه‌های پردازنده‌ی گرافیکی، سیستم‌‌های قدرتمندتری در آموزش مدل‌های یادگیری ماشین هستند و امروزه به‌‌صورت سرویس‌های ابری هم در اختیار کارشناسان قرار دارند. با توسعه‌ی چنین مفاهیمی، ساخت تراشه‌های اختصاصی برای اجرا و آموزش مدل‌های یادگیری ماشین هم سرعت گرفت. از میان پردازنده‌های اختصاصی می‌توان به واحد پردازشی تنسور (TPU) محصول شرکت گوگل اشاره کرد که از کتابخانه‌ی نرم‌افزاری TensorFlow ساخت همان شرکت، برای استخراج اطلاعات از داده استفاده می‌کند.

تراشه‌های اختصاصی گوگل نه‌تنها در پرورش مدل‌های دیپ‌مایند و گوگل برین کاربرد دارند، در کارایی‌های مرسوم‌تری همچون سرویس ترجمه‌ای این شرکت یا شناسایی تصویر در جست‌وجوی عکس، دیده می‌شوند. به‌علاوه کاربران عمومی نیز می‌توانند با سرویس‌های ابری همچون TensorFlow Research Cloud مدل‌های یادگیری ماشین خود را با استفاده از پردازنده‌های گوگل توسعه دهند.

یادگیری تحت نظارت

یادگیری ماشینی تحت نظارت، یکی از مرسوم‌ترین روش‌های آموزش مدل‌ها محسوب می‌شود. در چنین روشی، سیستم هوش مصنوعی با استفاده از مثال‌های متعدد برچسب‌گذاری‌شده، تحت آموزش قرار می‌گیرد. داده‌های آموزشی می‌توانند مجموعه‌ای از تصاویر باشند که محتوای آن‌ها، با برچسب اختصاصی مشخص شده باشد. در نمونه‌های دیگر، شاهد استفاده از متونی برای آموزش هستیم که با پاورقی‌های اختصاصی، موضوع اصلی آن‌ها تعیین می‌شود. مدل یادگیری با بهره‌گیری از همین برچسب‌ها، برچسب‌گذاری روی داده‌های جدید را می‌آموزد.

آموزش دادن مدل ماشینی با بهره‌گیری از مثال، با اصطلاح یادگیری تحت نظارت (Supervised Learning) شناخته می‌شود. برای برچسب‌گذاری داده‌های اولیه، از کاربران انسانی استفاده می‌شود که در پلتفرم‌‌هایی همچون Amazon Mechanical Turk  استخدام می‌شوند. آموزش مد‌ل‌های این‌چنینی، نیاز به پایگاه‌های عظیم داده دارد و برخی اوقات برای یادگیری یک وظیفه‌ی به‌خصوص، باید میلیون‌های مثال به الگوریتم تزریق شود.

با پیشرفت ابزارهای هوش مصنوعی، دست‌رسی به دیتاست‌های عظیم برچسب‌گذاری شده، اهمیت کمتری نسبت به دست‌رسی به قدرت پردازشی عظیم پیدا کرد. در سال‌های اخیر شبکه‌های موسوم به GAN  نشان دادند که سیستم‌های یادگیری ماشین، تنها با دریافت داده‌های محدود و کوچک، توانایی تولید داده‌های عظیم برای آموزش خود را دارند. چنین رویکردی، احتمالا به توسعه‌ی مفهوم یادگیری نیمه نظارتی منجر خواهد شد که در آن، سیستم‌‌ها با دیتاست‌های بسیار کوچک‌تر از دیتاست‌های امروزی، آموزش می‌بینند.

یادگیری بدون نظارت

این یادگیری بدون نیاز به دیتاست‌های برچس دار انجام می‌شود. الگوریتم‌ها در چنین روندی از یادگیری، تلاش می‌کنند تا الگوی مشترک میان داده‌ها را بیابند. درواقع آن‌ها به‌دنبال شباهت‌هایی می‌گردند که دسته‌بندی داده‌ها را راحت می‌کند. به‌عنوان مثال می‌توان به دسته‌بندی میوه‌های هم‌وزن یا خودروهایی با ابعاد موتور برابر اشاره کرد.

یادگیری بدون نظارت، با هدف انتخاب داده‌‌ی خاص از میان دیتاست داده انجام نمی‌شود. درواقع چنین الگوریتم‌هایی تنها تلاش می‌کنند تا داده‌های با مشخصات مشابه را پیدا کنند. به‌عنوان مثالی کاربردی، می‌توان به فیدهای خبری اشاره کرد که موضوع‌های مشابه را به‌صورت روزمره در دسته‌های مشخص قرار می‌دهند.

یادگیری تقویت شده

این نوع یادگیری که به آن یادگیری جایزه ای نیز می گویند، شباهت زیادی به آموزش حیوانات خانگی دارد. در چنین مدلی، سیستم به‌خاطر دستیابی به خروجی موردنظر، پاداش دریافت می‌کند. درنتیجه تلاش می‌کند تا پاداش خود را براساس داده‌های ورودی، به حداکثر برساند. چنین روشی از آموزش، بیشتر با سعی و خطا انجام می‌شود تا بیشترین پاداش درنهایت از میان گزینه‌های متعدد پیدا شود.

Google Deep Q Learning یکی از مثال‌های معروف در یادگیری تقویت شده محسوب می‌شود. این شبکه تاکنون بازیکنان حرفه‌ای را در مسابقه‌های گوناگون بازی ویدئویی شکست داده است. سیستم مذکور، پیکسل‌های هر بازی را دریافت کرده و مواردی همچون فاصله‌ی المان‌‌ها را در نمایشگر، تشخیص می‌دهد. در ادامه، سیستم با مشاهده‌ی امتیاز هر بازی، مدلی از انتخاب‌ها می‌سازد که بیشترین امتیاز را به‌‌همراه دارند.

آینده هوش مصنوعی و اثرات آن بر انسان ها و جهان

جهان در حال حاضر به طرف توسعه‌ ربات‌هایی با قابلیت فعالیت خودکار و درک و حرکت در جهان پیرامون رفته است که نشانه هم پوشانی طبیعی است که بین علم رباتیک و هوش مصنوعی وجود دارد. هوش مصنوعی یکی از فناوری‌های متعدد مورد استفاده در ربات‌ها محسوب می‌شود. ازطرفی توسعه‌ی هوش مصنوعی باعث شد تا ربات‌ها در حوزه‌های جدیدی همچون خودروهای خودران و ربات‌های تحویل کالا و ربات‌های آموزگار دیده شوند.

جهان فناوری امروز در لبه‌‌ی پرش به مرحله‌ای جدید از توانایی‌های هوش مصنوعی قرار دارد. شبکه‌های عصبی امروزی توانایی ساختن تصاویر واقعی را دارند و حتی با کیفیت بالا، صدای افراد را شبیه‌سازی می‌کنند. البته چنین پیشرفت‌هایی، با نگرانی‌های اجتماعی نیز همراه بوده است. از دستاوردهای خبرساز اخیر می‌توان به دیپ‌فیک اشاره کرد که لزوم کنترل و قانون‌گذاری بیشتر بر روند توسعه‌ی هوش مصنوعی را دوچندان می‌کند.

توانایی تشخیص گفتار

از پیشرفت‌های مهم یادگیری ماشین در دوران کنونی می‌توان به تشخیص دقیق صحبت‌های کاربر اشاره کرد. سیستم‌‌های کنونی با دقت ۹۵ درصد، صحبت‌های انسان را تشخیص می‌دهند. مایکروسافت اخیرا اعلام کرد که هوش مصنوعی با دقت برابر با انسان توسعه داده است که توانایی تبدیل صوت به متن را دارد. محققان به‌دنبال دقت 99.9 درصدی در تشخیص صوت هوش مصنوعی هستند و در آینده‌ی نه‌چندان دور، صحبت کردن با ماشین به یکی از رویکردهای اصلی تعامل کاربر با کامپیوتر تبدیل خواهد شد.

در سال‌های اخیر دقت و کیفیت تشخیص چهره در سیستم‌‌های کامپیوتری بهبود یافته است. نیروهای پلیس و دیگر مجریان قانون در کشورهای غربی، برنامه‌های آزمایشی با هدف استفاده از هوش مصنوعی در تشخیص چهره‌ی مجرمان اجرا کرده‌اند. چینی‌ها چند قدم فراتر رفته‌اند و برنامه‌ای در سطح ملی برای اتصال دوربین‌های مداربسته به هوش مصنوعی عظیم تشخیص چهره دارند. آن‌ها همچنین به‌دنبال تجهیز پلیس خود به عینک‌هایی با قابلیت تشخیص دقیق چهره هستند.

یکی از حوزه‌های مهم کاربرد هوش مصنوعی، علم پزشکی است. ماشین‌های هوشمند امروزه در کنار پزشکان و متخصصان به تشخیص بیماری از تصاویر پزشکی کمک می‌کنند. به‌علاوه آن‌ها توانایی تشخیص الگوهای ژنتیکی را دارند که منجر به بیماری‌های خاص می‌شوند. در داروسازی نیز می‌توان با استفاده از هوش مصنوعی، مولکول‌های کاربردی‌تر در ساخت دارو را کشف کرد.

برنامه‌های آزمایشی متعددی در سرتاسر جهان انجام شده‌اند تا تأثیر و کاربرد هوش مصنوعی را در بیمارستان‌ها بررسی کنند. به‌عنوان مثال ابزار پشتیبانی تصمیم‌های کلینیکی واتسون از شرکت  IBMدر برخی بیمارستان‌ها به‌صورت آزمایشی استفاده می‌شود. هوش مصنوعی دیپ‌مایند گوگل نیز در سرویس سلامت ملی بریتانیا و در بخش بیماری‌های سر و گردن استفاده می‌شود که ناهنجاری‌های چشمی را در مسیر تشخیص بیماری، بررسی می‌کند.

هوش مصنوعی

هوش مصنوعی (Artificial Intelligence) و آینده بشر

پاسخ به نگرانی درباره‌ی تهدیدهای هوش مصنوعی، به مخاطب سؤال بستگی دارد. به‌هرحال با پیشرفت سیستم‌‌های مبتنی بر هوش مصنوعی، نگرانی‌ها از خطر آن‌ها نیز بیشتر شده است. مدیرعامل تسلا و اسپیس ایکس،‌ ایلان ماسک، هوش مصنوعی را «تهدیدی بنیادی برای موجودیت تمدن بشری» می‌داند. او در مسیر تلاش‌هایش برای افزایش نظارت و تنظیم‌گری بر تحقیقات هوش مصنوعی و کاهش اثرات مضر آن، شرکت تحقیقاتی OpenAI را بصورت یک سازمان غیرانتفاعی راه‌اندازی کرد. استیون هاوکینگ فقید نیز درمورد تهدیدهای هوش مصنوعی هشدار داده بود. او اعتقاد داشت وقتی هوش مصنوعی پیشرفته توسعه داده شود، با سرعت زیادی انسان را پشت سر می‌‌گذارد و به دلیل یک اصل تکینگی، تهدیدی جدی برای جامعه بشری خواهد بود.

باوجود نگرانی‌های متعددی که ازسوی برخی کارشناسان پیرامون هوش مصنوعی مطرح می‌شود، بسیاری از محققان آن را مضحک می‌دانند. درواقع ازنظر آن‌ها هنوز فاصله‌ی زیادی با انفجار هوش مصنوعی و پیش افتادن آن از عقل انسانی داریم. برخی دانشمندان معتقدند هوش مصنوعی محدود کنونی، فاصله زیادی با هوش مصنوعی عمومی دارد.

هوش مصنوعی (Artificial Intelligence) و وضعیت اشتغال

از میان نگرانی‌هایی که پیرامون هوش مصنوعی مطرح می‌شود، نگرانی از جایگزینی شغل‌ها توسط ماشین‌های هوشمند، محتمل تر به نظر می‌رسد. اگرچه هوش مصنوعی به‌صورت کامل جایگزین اشتغال انسانی نمی‌شود، اما به‌هرحال طبیعت شغل و کار را تغییر می‌دهد. اکنون تنها سرعت و چگونگی تغییر و تحول در محیط کار به‌خاطر اتوماسیون مطرح می‌شود. ازطرفی هوش مصنوعی توانایی جایگزینی بسیاری از توانایی‌های انسانی را دارد. اندرو ان‌جی، متخصص هوش مصنوعی می‌گوید انسان‌ها امروزه فعالیت‌های تکراری و ساده‌ی زیادی را در محیط‌‌های کاری انجام می‌دهند که هوش مصنوعی به‌راحتی توانایی جایگزینی آن‌ها را خواهد داشت.

آیا با همان سرعتی که شغل‌ها طی اتوماسیون نابود می‌شوند، شغل‌های جدید هم ایجاد می‌شوند؟

اخبار کنونی از جایگزینی شغل‌های انسانی توسط اتوماسیون، به‌هرحال نگرانی‌هایی را ایجاد می‌کند برای نمونه اتوماسیون در صنعت حمل‌ونقل، هنوز به زمان زیادی برای توسعه نیاز دارد. اگرچه خودروهای سواری و باری خودکار تا بلوغ فاصله دارند، اما به‌هرحال نگرانی از جایگزینی شغل‌های رانندگی توسط هوش مصنوعی، غیرمنطقی نخواهد بود. ازطرفی همه‌ی شغل‌های در معرض جایگزینی توسط هوش مصنوعی، با ربات‌ها جایگزین نمی‌شوند. درحال‌حاضر افراد زیادی هستند که فعالیت‌های اداری تکراری انجام می‌دهند و با پیشرفت نرم‌افزارها و سیستم‌های اتوماسیون، شغل آن‌ها نیز در معرض خطر قرار دارد.

هر تغییر مسیری در دنیای فناوری، با از بین رفتن تعدادی شغل و تولد شغل‌هایی جدید همراه می‌شود. منتقدان نظریه‌ تسلط هوش مصنوعی (Artificial Intelligence) بر دنیای کسبب و کار نیز اعتقاد دارند شغل‌های جدید، فرصت کار را همیشه برای نیروی انسانی زنده نگه می‌دارند تمام فرضیه ها پیرامون آینده‌ی اشتغال با حضور هوش مصنوعی، بدبینانه نیست برخی اعتقاد دارند که هوش مصنوعی (Artificial Intelligence) در آینده به‌جای جایگزینی شغل ما، به بهبود فعالیت‌ها کمک می‌کند. به‌عنوان مثال می‌توان به ابزارهای هوشمند مانند لنزهای واقعیت مجازی اشاره کرد که به افزایش بهره وری کارگران می‌انجامند.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

این فیلد را پر کنید
این فیلد را پر کنید
لطفاً یک نشانی ایمیل معتبر بنویسید.

فهرست